Syntheses and Structures of the New Quaternary Group IV Tellurides Cs_{0.68}CuTiTe₄ and Cs₃CuHf₂Te₁₀

Michael F. Mansuetto, Jason A. Cody, Samson Chien, and James A. Ibers

Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113

Received November 4, 1994. Revised Manuscript Received February 28, 1995[®]

The new compounds $Cs_{0.68}CuTiTe_4$ and $Cs_3CuHf_2Te_{10}$ have been synthesized at 350 and 475 °C, respectively, through reaction of the elements with a Cs_2Te_n flux. $Cs_{0.68}CuTiTe_4$ crystallizes in space group $C_{2h}^3 - C2/m$ of the monoclinic system with four formula units in a cell of dimensions a = 19.728(11), b = 3.923(2), c = 13.374(7) Å, $\beta = 129.65(1)^{\circ}, V = 796.9(7)$ Å³ (T = 113 K). Cs₃CuHf₂Te₁₀ crystallizes in space group $C_i^1 - P\overline{1}$ of the triclinic system with two formula units in a cell of dimensions a = 9.889(5), b = 10.916(6), c = 11.110(6) Å, a = 10.916(6), c = 10.916(6), c92.08(1), $\beta = 90.15(1)$, $\gamma = 101.27(1)^{\circ}$, V = 1175.3(11) Å³ (T = 113 K). The structures of both compounds have been determined by single-crystal X-ray methods. Cs_{0.68}CuTiTe₄ has a three-dimensional channel structure. Cs^+ cations occupy the channels. The channels are built up from layers that are interconnected by Te-Te bonds. In these layers there are *pairs* of edge-shared CuTe₄ tetrahedra that in turn edge-share to $TiTe_6$ octahedra. The conductivity in the needle (b) direction is $5 \times 10^{-3} \Omega^{-1} \text{cm}^{-1}$ at room temperature. The structure of $Cs_3CuHf_2Te_{10}$ comprises infinite one-dimensional chains of $HfTe_7$ polyhedra and edge-shared CuTe₄ tetrahedra; these chains are separated from one another by Cs^+ cations. A chain may be formulated as $\frac{1}{2}$ [CuHf₂(Te₃)(Te₂)₃(Te)³⁻]. The conductivity in the needle [111] direction is $< 1 \times 10^{-5} \Omega^{-1} cm^{-1}$ at room temperature.

Introduction

The reactive flux method¹ has afforded an amazing variety of structure types among new ternary and quaternary metal chalcogenides and polychalcogenides. These include isolated,² one-dimensional,^{1,3-8} twodimensional, 9^{-11} and three-dimensional7,12,13 species. The wide variety of structure types may be attributed to the propensity of chalcogen atoms to form Q-Q bonds (Q = S, Se, Te). While the majority of species synthesized have been sulfides or selenides, the reactive flux method has been applied to the synthesis of tellurides.^{4,8,14} Although a few ternary cesium tellurides are known,¹⁵⁻²⁰ only Cs₄Zr₃Te₁₆⁸ was prepared by the reac-

- Kang, D.; Ibers, J. A. Inorg. Chem. 1988, 27, 549-551.
 Keane, P. M.; Ibers, J. A. Inorg. Chem. 1991, 30, 1327-1329.
 Kanatzidis, M. G.; Park, Y. J. Am. Chem. Soc. 1989, 111, 3767-
- 3769.
- (6) Park, Y.; Kanatzidis, M. G. Angew. Chem., Int. Ed. Engl. 1990, 29, 914-915.
- (7) Kanatzidis, M. G. Chem. Mater. 1990, 2, 353-363.
 (8) Cody, J. A.; Ibers, J. A. Inorg. Chem. 1994, 33, 2713-2715.
 (9) Mansuetto, M. F.; Keane, P. M.; Ibers, J. A. J. Solid State Chem.
- 1992, 101, 257-264.
- (10) Mansuetto, M. F.; Keane, P. M.; Ibers, J. A. J. Solid State Chem. 1993, 105, 580-587.
- (11) Lu, Y.-J.; Ibers, J. A. J. Solid State Chem. 1991, 94, 381-385. (12) Keane, P. M.; Ibers, J. A. J. Solid State Chem. 1991, 93, 291-297.
- (13) Keane, P. M.; Ibers, J. A. Inorg. Chem. 1991, 30, 3096-3098.
- (14) Park, Y.; Degroot, D. C.; Schindler, J.; Kannewurf, C. R.;
 Kanatzidis, M. G. Angew. Chem., Int. Ed. Engl. 1991, 30, 1325-1328.
 (15) Brinkmann, C.; Eisenmann, B.; Schäfer, H. Mater. Res. Bull.
- 1985, 20, 1207-1211 (16) Brinkmann, C.; Eisenmann, B.; Schäfer, H. Mater. Res. Bull. 1985, 20, 299-307

(17) Bronger, W.; Kathage, H. U. J. Alloys Compd. 1992, 184, 87-94.

tive flux method. It appears that the use of Cs, rather than the more typical Na or K, in the reactive flux leads to a wide variety of new compounds. We illustrate this here with the syntheses and structures of two new cesium tellurides, the three-dimensional channel compound $Cs_{0.68}CuTiTe_4^{21}$ and the one-dimensional chain compound Cs₃CuHf₂Te₁₀.

Experimental Section

Syntheses. Cs_{0.68}CuTiTe₄ was synthesized by combining Cs_2Te_3 (107 mg, 0.17 mmol) with powders of the elements Cu (21 mg, 0.33 mmol; Aldrich, 99.999%), Ti (16 mg, 0.33 mmol; AESAR, 99.9%), and Te (106 mg, 0.83 mmol; Aldrich, 99.8%). $Cs_3CuHf_2Te_{10}$ was synthesized by combining Cs_2Te_3 (158 mg, 0.24 mmol) with powders of the elements Cu (8 mg, 0.12 mmol), Hf (22 mg, 0.12 mmol; Johnson-Matthey, 99.6%), and Te (62 mg, 0.49 mmol). The binary starting material $\mathrm{Cs_2Te_3}$ was synthesized by reaction of Cs (Aldrich 99.5%) with Te in stoichiometric quantities in liquid ammonia under an Ar atmosphere. The composition Cs₂Te₃ was confirmed by comparison of its powder diffraction pattern with that generated from the known structure.^{22,23}

The reaction mixtures were loaded into fused silica tubes in a drybox under an Ar atmosphere. The tubes were evacuated to approximately 10^{-3} Torr and sealed. For $Cs_{0.68}$ -CuTiTe₄ the tube was heated in a furnace at 350 °C for 4 days before being cooled at 4 °C/h to room temperature. For Cs₃-CuHf₂Te₁₀ the tube was heated at 475 °C for 6 days before being cooled at 4 °C/h to room temperature. Black needles of Cs_{0.68}CuTiTe₄ were manually extracted from the melt while black needles of Cs₃CuHf₂Te₁₀ were isolated by washing the

^{*} Abstract published in Advance ACS Abstracts, April 1, 1995.

⁽¹⁾ Sunshine, S. A.; Kang, D.; Ibers, J. A. J. Am. Chem. Soc. 1987, 109.6202-6204.

⁽²⁾ Schreiner, S.; Aleandri, L. E.; Kang, D.; Ibers, J. A. Inorg. Chem. 1989, 28, 392-393.

⁽¹⁸⁾ Eisenmann, B.; Jäger, J. Z. Kristallogr. 1991, 197, 251-252.
(19) Eisenmann, B.; Jäger, J. Z. Kristallogr. 1991, 197, 253-254.
(20) Bronger, W.; Kimpel, M.; Schmitz, D. Acta Crystallogr., Sect.
B: Struct. Sci. 1983, 39, 235-238.
(21) Cody, J. A.; Mansuetto, M. F.; Chien, S.; Ibers, J. A. Mater.
Sci. Forum 1994, 152-153, 35-42.
(20) Britcher B. J. L. Gramman, M. J. 1990, 70, 2021, 271

⁽²²⁾ Böttcher, P. J. Less Common Met. 1980, 70, 263-271.

⁽²³⁾ Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10, 73-74.

Table 1. Crystallographic Details for $Cs_{0.68}CuTiTe_4$ and $Cs_3CuHf_2Te_{10}$

$Cs_{0.68}CuTiTe_4$	Cs ₃ CuHf ₂ Te ₁₀
712.6	2095.3
$C_{2h}^{3} - C2/m$	$C_i^1 - P\bar{1}$
19.728(11)	9.889(5)
3.923(2)	10.916(6)
13.374(7)	11.110(6)
90	92.08(1)
129.65(1)	90.15(1)
90	101.27(1)
796.9(7)	1175.3(11)
4	2
5.94	5.92
113	113
209.9	264.3
0.564 - 0.684	0.457 - 0.577
0.029	0.063
0.071	0.128
	$\begin{array}{c} {\rm Cs}_{0.68}{\rm CuTiTe}_4 \\ 712.6 \\ {\rm C}^3_{2h}-{\rm C2}/m \\ 19.728(11) \\ 3.923(2) \\ 13.374(7) \\ 90 \\ 129.65(1) \\ 90 \\ 796.9(7) \\ 4 \\ 5.94 \\ 113 \\ 209.9 \\ 0.564-0.684 \\ 0.029 \\ 0.071 \\ \end{array}$

^a The low-temperature system is based on a design by Huffman.³² ^b $R(F_o) = \Sigma ||F_o| - |F_c|/\Sigma |F_o|; R_w(F_o^2) = \{\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma w F_o^4\}^{1/2}, w^{-1} = \sigma^2 (F_o^2) + (0.04F_o^2)^2; w^{-1} = \sigma^2 (F_o^2), F_o^2 < 0.$

excess flux away with water. The yield of both reactions was very low (ca. 10 crystals of reasonable size (0.3 mm) per good tube.) Major products, in addition to the melt, include amorphous material and a few crystals of what could be CsCuMTe₃ phases on the basis of EDAX results. The compounds are stable in air and water. The quaternary nature of the compounds and approximate atomic ratios (1:1:1:3 for Cs_{0.68}CuTiTe₄ and 2:1:2:12 for Cs₃CuHf₂Te₁₀) were determined with the microprobe of an EDAX (energy-dispersive analysis by X-rays) equipped Hitachi S-570 scanning electron microscope. In both instances, the ratios were consistent from crystal to crystal, batch to batch. The final formulations of the compounds are based on the X-ray structure determinations.

Crystallography. Cell parameters were determined from a least-squares analysis of the setting angles of 29 reflections in the range $13^{\circ} < 2\theta(Mo \ K\alpha_1) < 33^{\circ}$ for $Cs_{0.68}CuTiTe_4$ and 25 refections in the range $25^{\circ} < 2\theta(Mo \ K\alpha_1) < 35^{\circ}$ for Cs_3CuHf_2 - Te_{10} that had been automatically centered at 113 K on a Picker diffractometer operated from a PC.²⁴ Six representative standard reflections monitored every 100 refections showed no significant variations in intensity during either data collection. Crystallographic details are listed in Table 1. Additional information is given in Table SI (supplementary material).²⁵ Intensity data were processed and corrected for absorption²⁶ on an IBM RS/6000 series computer with programs and methods standard in this laboratory.

For Cs_{0.68}CuTiTe₄ the observed Laue symmetry and the systematic absences are consistent with the monoclinic space groups C_2^3 -C2, C_s^3 -Cm, and C_{2h}^3 -C2/m. Analysis of the data with the program XPREP²⁷ favored the centrosymmetric space group C2/m. The structure was solved in this space group with the direct methods program XS of the SHELXTL PC program package.²⁷ The structure of Cs₃CuHf₂Te₁₀ was solved with the use of the direct methods program SHELX-86.²⁸ The structures were refined by full-matrix least-squares techniques with the use of the program SHELXL-93,²⁹ the function $\sum (F_o^2)^2 - F_c^2)^2$ being minimized. Prior to the refinement of its occupancy, the Cs position in Cs_{0.68}CuTiTe₄ displayed excessive thermal motion. The final refinement led to a value of $R_w(F_o^2)$ of 0.071. The conventional R index (on F for $F_o^2 > 2\sigma(F_o^2)$) is

- (25) Supplementary material
- (26) de Meulenaer, J.; Tompa, H. Acta Crystallogr. **1965**, 19, 1014–1018.
- (27) Sheldrick, G. M. SHELXTL PC Version 4.1 An integrated system for solving, refining, and displaying crystal structures from diffraction data. Siemens Analytical X-Ray Instruments, Inc. Madison, WI.

Table 2. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters $(\dot{A}^2\times 10^3)$ for $Cs_{0.68}CuTiTe_4$

	x	У	z	U(eq) ^a
Cs	105(1)	0	3632(1)	23(1)
Cu	2427(1)	0	666(1)	10(1)
${ m Ti}$	2998(1)	0	8049(2)	7(1)
Te(1)	782(1)	0	1472(1)	7(1)
Te(2)	3091(1)	0	6010(1)	8(1)
Te(3)	3701(1)	0	509(1)	8(1)
Te(4)	3264(1)	0	3129(1)	8(1)

 a $U({\rm eq})$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 3. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters $(\AA^2\times 10^3)$ for $Cs_3CuHf_2Te_{10}$

	x	у	z	U(eq)
Cs(1)	8859(2)	1096(2)	2621(2)	19(1)
Cs(2)	4461(2)	2371(2)	3921(2)	21(1)
Cs(3)	3006(2)	3769(2)	-1047(2)	20(1)
Cu	-839(4)	6280(3)	5572(3)	17(1)
Hf(1)	1074(1)	6207(1)	3640(1)	14(1)
Hf(2)	3087(1)	8414(1)	1443(1)	13 (1)
Te(1)	-1601(2)	4382(2)	3943(2)	13(1)
Te(2)	-756(2)	7976(2)	4050(2)	14(1)
Te(3)	1944(2)	4048(2)	2370(2)	15(1)
Te(4)	2105(2)	8868(2)	3955(2)	14(1)
Te(5)	771(2)	6349(2)	1035(2)	12(1)
Te(6)	3948(2)	6400(2)	2905(2)	14(1)
Te(7)	378(2)	8748(2)	661 (2)	14(1)
Te(8)	5344(2)	9116(2)	3052(2)	18(1)
Te(9)	3323(2)	10913(2)	703(2)	14(1)
Te(10)	4073(2)	7514(2)	-758(2)	14(1)

Figure 1. View of the structure of $Cs_{0.68}CuTiTe_4$ down [010] with atoms labeled. Here and in succeeding figures the atoms are drawn as circles of arbitrary size.

Figure 2. View of the structure of $Cs_{0.68}CuTiTe_4$ down a^* with atoms labeled.

⁽²⁴⁾ Huffman, J. C.; Streib, W. E. Unpublished work.

⁽²⁸⁾ Sheldrick, G. M. In Crystallographic Computing 3; Sheldrick, G. M., Krüger, C., Goddard, R., Eds.; Oxford University Press: London, 1985; pp 175-189.

⁽²⁹⁾ Sheldrick, G. M. J. Appl. Crystallogr., in press.

Figure 3. Stereoview of the structure of Cs_{0.68}CuTiTe₄.

Figure 4. Comparison of a layer of NaCuTiS₃ (A) with a pseudolayer of $Cs_{0.68}CuTiTe_4$ (B).

0.029. The final difference electron density map shows no features with a height greater than 0.7% that of a Te atom. For Cs₃CuHf₂Te₁₀ the final refinement led to a value of $R_w(F_0^2)$ of 0.128. The conventional R index (on F for $F_0^2 > 2\sigma(F_0^2)$) is 0.063. The final difference electron density map shows no features with a height greater than 1.8% that of a Hf atom.

Values of the atomic parameters and equivalent isotropic displacement parameters are given in Tables 2 and 3 for $Cs_{0.68}$ -CuTiTe₄ and $Cs_3CuHf_2Te_{10}$, respectively. The anisotropic displacement parameters are presented in Tables SII and SIII.²⁵

Results

Cs_{0.68}CuTiTe₄. Cs_{0.68}CuTiTe₄ is a new member of a growing family of quaternary A/Cu/M/Q compounds, where A = alkali metal, M = group IV element, and Q= chalcogen.^{9,10} Since the structure of the $ACuMQ_3$ series changes on going from $A = K^9$ to A = Na¹⁰ we anticipated the formation of CsCuMTe₃ with yet a different structure. Instead Cs_{0.68}CuTiTe₄ formed. Cs_{0.68}-CuTiTe₄ has a three-dimensional channel structure. The channels are built up from layers that are interconnected by Te-Te bonds. The Te(1)-Te(1') bond of 3.084 (2) Å lies in the ac plane, as seen in Figure 1. The $\cdot \cdot \cdot Te(2) - Te(2') - Te(2'') \cdot \cdot \cdot$ bonds of 2.923(1) Å form an infinite zigzag chain along b (Figure 2). Within the channels the Cs⁺ cations, which occupy two out of every three Cs sites, are coordinated by nine Te atoms in a monocapped square-prismatic arrangement. A stereo view of the structure is given in Figure 3. Selected distances and angles are given in Table 4. Complete metrical data are given in Table SIV.25 The layers contain pairs of $CuTe_4$ tetrahedra joined at the Te(3)-Te(3') edge, and these tetrahedra are in turn joined at the Te(3)-Te(4) edge to $TiTe_6$ octahedra. The units are further connected through Te(1)-Te(1') bonds and Te-(2)-Te(2') bonds (Figures 1 and 2) to complete the

Table 4. Selected Bond Lengths (Å) and Angles (deg) for $Cs_{0.68}CuTiTe_4^a$

Cs-Te(3)#1	3.769(2)
Cs-Te(4)#1	3.790(2)
$C_{s} - T_{e}(2) \# 2$	3818(2)
$C_{s}-T_{e}(4)#2$	3.896(2)
$C_{1} - T_{e}(4)$	2.575(2)
$C_{11} = T_{0}(2) \# 2$	2.010(2)
$C_{\rm H} = \frac{T_{\rm e}(3)}{2}$	2.003(1)
$C_{\rm H} = C_{\rm H} + 2$	2.003(2) 9.796(9)
Cu T:#9	2.100(2)
$U_{1} = 11 + 2$ $U_{1} = 0 + 4$	3.037(2)
$11^{-1} = 10(3)\#4$ $T_{1}^{2} = T_{2}(4)\#5$	2.032(2)
11 - 10(4)#0	2.743(2)
11 - 12(1) = 10	2.843(2)
$T_1 - T_2(2)$	2.846(2)
Te(1) - Te(1)#6	3.084(2)
Te(2) - Te(2) #5	2.923(1)
Te(3)#1-Cs-Te(3)#7	62.72(4)
Te(3)#1-Cs-Te(4)#1	65.84(3)
Te(3)#7-Cs-Te(4)#1	97.44(4)
Te(4)#1-Cs-Te(4)#7	62.33(4)
Te(3)#1-Cs-Te(2)#2	111.90(4)
Te(3)#7-Cs-Te(2)#2	80.70(4)
Te(4)#1-Cs-Te(2)#2	177.64(3)
Te(4)#7-Cs-Te(2)#2	117.87(4)
Te(2)#2-Cs-Te(2)#5	61.82(4)
Te(3)#1-Cs-Te(1)	62.17(5)
Te(4)#1-Cs-Te(1)	127.85(3)
Te(2)#2-Cs-Te(1)	49.97(3)
Te(3)#1-Cs-Te(4)#2	174.80(4)
Te(3)#7-Cs-Te(4)#2	118.15(4)
Te(4)#1-Cs-Te(4)#2	118.43(4)
Te(4)#7-Cs-Te(4)#2	87.42(4)
Te(2)#2-Cs-Te(4)#2	63.86(4)
Te(2)#5-Cs-Te(4)#2	94 40(4)
Te(1) - Cs - Te(4)#2	113 29(5)
Te(4)#2-Cs-Te(4)#5	60.46(4)
Te(4) - Cu - Te(3)#3	112 02(4)
Te(3)#8-Cu-Te(3)#3	97.51(6)
Te(4) - Cu - Te(3)	103 56(6)
$T_{e}(3)#3-C_{11}-T_{e}(3)$	116.06(5)
Te(3)#4-Ti-Te(4)#5	106 18(5)
$T_{e}(4)#5-T_{i}-T_{e}(4)#2$	91.29(7)
$T_{e}(3)#4-T_{i}-T_{e}(1)#2$	91.32(5)
$T_{0}(4)#5-T_{1}-T_{0}(1)#2$	161 95(8)
$T_{e}(4)#9 - T_{i} - T_{e}(1)#9$	87 94(5)
$T_{0}(1) \# 2 = T_{1} = T_{0}(1) \# 5$	87 27(7)
$T_{0}(3) # 4 - T_{1} - T_{0}(2)$	153 95(8)
$T_{e}(4) # 5 - T_{i} - T_{e}(2)$	92 27(6)
$T_{0}(1) \# 9 - T_{1} - T_{0}(9)$	69 75(5)
$T_{e}(2)#2 - T_{e}(2) - T_{e}(2)#5$	84 31(5)
$\mathbf{T} \mathbf{C} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{T} \mathbf{C} \mathbf{D} \mathbf{D} \mathbf{T} \mathbf{C} \mathbf{D} \mathbf{D} \mathbf{T} \mathbf{C} \mathbf{D} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} T$	010101

^a Symmetry transformations used to generate equivalent atoms: #1 $x - \frac{1}{2}$, $y - \frac{1}{2}$, z; #2 $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; #3 $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z; #4 x, y, z + 1; #5 $-x + \frac{1}{2}$, $-y - \frac{1}{2}$, -z + 1; #6 -x, -y, -z; #7 $x - \frac{1}{2}$, $y + \frac{1}{2}$, z; #8 $-x + \frac{1}{2}$, $-y - \frac{1}{2}$, -z.

channel structure. The Cu–Te bond distances range from 2.575(2) to 2.653(2) Å and are in good agreement with those found in Cu₂MTe₃ (2.594(1) to 2.705(1) Å).¹² The CuTe₄ tetrahedron is distorted with Te–Cu–Te bond angles ranging from 97.51(6) to 116.06(5)°. The Ti–Te distances range from 2.632(2) to 2.846(2) Å; the Ti–Te distance in TiTe₂ is 2.769(1) Å.³⁰ The TiTe₆

Cu
 Hf
 Definition

Figure 5. View of the anionic $^1_{\rm so}[{\rm CuHf_2(Te_3)(Te_2)_3(Te)^{3-}}]$ chain in ${\rm Cs_3CuHf_2Te_{10.}}$

Figure 6. View of the unit cell of Cs₃CuHf₂Te₁₀.

Figure 7. Six-membered Hf/Te ring in Cs₃CuHf₂Te₁₀.

octahedron is severely distorted, as the Te-Ti-Te angles range from 69.75(5) to $161.95(8)^{\circ}$.

Although Cs_{0.68}CuTiTe₄ represents a new structure type, it is closely related to the structures of the compounds NaCuMQ₃ (M = Ti, Zr; Q = S, Se, Te).¹⁰ Cs0.68CuTiTe4 and NaCuMQ3 contain CuQ4 tetrahedra and MQ_6 octahedra. NaCuMQ₃ comprises $^{2}_{\omega}[CuMQ_3^{-}]$ layers with pairs of edge-shared CuQ4 tetrahedra connected by edge-sharing to pairs of edge-shared MQ₆ octahedra. Cs_{0.68}CuTiTe₄ shows the same features, with one exception: the TiTe6 octahedra do not edge share, but rather are connected through Te-Te bonds. This is illustrated in Figure 3 where a 2 [CuTiS₃⁻] layer in NaCuTiS₃ is compared with a "layer" of Cs_{0.68}CuTiTe₄. The addition of the Te-Te bonds accounts for the difference in chalcogen stoichiometry between the two compounds. In the $ACuMQ_3$ series, the sum of the positive oxidation states is 6, as there is no Q-Q

Table 5. Selected Bond Lengths (Å) and Angles (deg) for $Cs_3CuHf_2Te_{10}^a$

$C_{\mu} = T_{\theta}(2)$	2 543(4)
Cu = 1e(2)	2.545(4)
Cu-Te(3)#1	2.544(4)
Cu-Te(1)	2.692(4)
$C_{11} - T_{0}(1) \# 1$	9.700(4)
	2.709(4)
Cu-Hf(1)#1	2.849(4)
Cu-Hf(1)	2.874(4)
$\mathbf{Uf}(1) = \mathbf{T}_{0}(A)$	9 809(9)
$\Pi(1) - \Pi(4)$	2.092(3)
Hf(1)-Te(2)	2.919(2)
Hf(1)-Te(5)	2.922(3)
H(1) = H(0)	2.022(0)
HI(1) - Ie(6)	2.930(2)
Hf(1)-Te(3)	2.974(2)
Hf(1) - To(1)	3 019(9)
	0.012(2)
Hf(2)-Te(8)	2.824(2)
Hf(2)-Te(9)	2.843(3)
$Hf(2) - T_{0}(10)$	9 947(9)
III(2) - Ie(10)	2.047(2)
Hf(2)-Te(5)	2.904(2)
Hf(2)-Te(7)	2.908(2)
$\mathbf{Uf}(2) = \mathbf{T}_{2}(4)$	2 014(2)
$\operatorname{HI}(2) = \operatorname{Ie}(4)$	5.014(5)
Hf(2)-Te(6)	3.031(2)
Te(2)-Te(4)	2.810(3)
$T_{\alpha}(2) - T_{\alpha}(C)$	9.061(9)
1e(3) - 1e(6)	2.901(3)
Te(5)-Te(7)	2.768(3)
$T_{e}(6) - T_{e}(8)$	3.014(3)
$T_{-}(0) = T_{-}(10) \# 0$	0.01(0)
Te(9) - Te(10)#2	2.801(3)
T-(0) C- T-(0)#1	100 0(0)
1e(2) - Cu - 1e(3)#1	132.8(2)
Te(2)-Cu-Te(1)	94.52(13)
$T_{0}(3)#1 - C_{11} - T_{0}(1)$	115 25(14)
	115.20(14)
Te(2)-Cu-Te(1)#1	115.66(14)
Te(3)#1-Cu-Te(1)#1	99.02(13)
$T_{0}(1) - C_{11} - T_{0}(1) \# 1$	02 20(12)
1e(1)=Cu=1e(1)#1	55.50(12)
Te(1)#1 - Hf(1) - Te(4)	95.88(6)
Te(1)#1 - Hf(1) - Te(2)	100.75(6)
$T_{0}(A) - Uf(1) - T_{0}(2)$	57 8A(C)
1e(4) - 111(1) - 1e(2)	57.64(0)
Te(1)#1-Hf(1)-Te(5)	168.05(7)
Te(4) - Hf(1) - Te(5)	92.84(6)
$T_{0}(2) - Hf(1) - T_{0}(5)$	00.81(6)
1e(2) - HI(1) - 1e(5)	90.81(6)
Te(1)#1-Hf(1)-Te(6)	93.90(6)
Te(4) - Hf(1) - Te(6)	78.76(6)
$T_{c}(1)$ $H(1)$ $T_{c}(0)$	195 15(7)
1e(2) - HI(1) - 1e(6)	130.10(7)
Te(5) - Hf(1) - Te(6)	79.78(6)
$T_{e}(1)#1 - Hf(1) - T_{e}(3)$	98.71(7)
$T_{c}(4)$ $T_{c}(1)$ $T_{c}(0)$	197 09(7)
1e(4) - HI(1) - 1e(3)	137.08(7)
Te(2) - Hf(1) - Te(3)	153.67(7)
Te(5) - Hf(1) - Te(3)	69.36(6)
$T_{0}(C)$ $Hf(1)$ $T_{0}(2)$	CO 10(C)
1e(6) - HI(1) - 1e(3)	60.19(6)
Te(1)#1-Hf(1)-Te(1)	84.02(6)
$T_{e}(4) - Hf(1) - T_{e}(1)$	138 02(7)
$T_{\rm c}(1)$ $T_{\rm c}(1)$ $T_{\rm c}(1)$	00.04(7)
1e(2) - HI(1) - 1e(1)	80.84(7)
Te(5)-Hf(1)-Te(1)	94.94(6)
$T_{e}(6) - Hf(1) - T_{e}(1)$	143 21(7)
$T_{0}(2)$ $Hf(1)$ $T_{0}(1)$	99 74(7)
1e(3) - HI(1) - 1e(1)	03.74(7)
Te(8)-Hf(2)-Te(9)	91.68(7)
$T_{e}(8) - Hf(2) - T_{e}(10)$	108.28(7)
$T_{0}(0)$ $H(0)$ $T_{0}(10)$	04.07(7)
1e(9) - HI(2) - 1e(10)	94.97(7)
Te(8) - Hf(2) - Te(5)	138.57(7)
$T_{e}(9) - Hf(2) - T_{e}(5)$	127.38(7)
$m_{-}(10)$ II(0) $m_{-}(5)$	94 19(6)
1e(10) - HI(2) - 1e(5)	84.12(6)
Te(8) - Hf(2) - Te(7)	148.36(7)
$T_{e}(9) - Hf(2) - T_{e}(7)$	71 76(6)
$T_{c}(10) T_{c}(2) T_{c}(7)$	100.00(7)
Te(10) - HI(2) - Te(7)	100.06(7)
Te(5) - Hf(2) - Te(7)	56.88(6)
Te(8) - Hf(2) - Te(4)	69.28(7)
$T_{0}(0)$ $T_{0}(2)$ $T_{0}(4)$	00.20(7)
Te(9)-Ht(2)-Te(4)	96.31(7)
Te(10) - Hf(2) - Te(4)	168.52(7)
$T_{0}(5) - Hf(9) - T_{0}(4)$	90 79(6)
1e(3) - 11(2) - 1e(4)	50.72(0)
Te(7)-Ht(2)-Te(4)	85.54(6)
Te(8) - Hf(2) - Te(6)	61.85(6)
$T_{0}(0) = H(0) = T_{0}(0)$	159 59(7)
1e(9) - HI(2) - 1e(6)	153.53(7)
Te(10) - Hf(2) - Te(6)	93.55(7)
Te(5) - Hf(2) - Te(6)	78 41(7)
$m_{-}(7)$ $m_{0}(7)$ $m_{0}(7)$	101.04/2)
Te(7)-Ht(2)-Te(6)	131.04(7)
Te(4) - Hf(2) - Te(6)	75.34(6)

^a Symmetry transformations used to generate equivalent atoms: #1 - x, -y + 1, -z + 1; #2 - x + 1, -y + 2, -z.

bonding. In $Cs_{0.68}$ CuTiTe₄ this sum is reduced to 5.68, while the number of Te atoms in the formula unit

⁽³⁰⁾ Riekel, C.; Thomas, M.; Schöllhorn, R. Phys. Status Solidi A 1978, 50, K231-K234.

increases from 3 to 4 and Te–Te bonding is introduced. Atoms Te(3) and Te(4) are isolated Te²⁻ ions. If we consider Te(1)–Te(1') to be a Te₂²⁻ unit, then 5 of the needed 5.68 negative charges are accounted for, and the remaining negative charge can be assigned to the Te-(2) infinite chain (Te(2)–Te(2) = 2.923(1) Å). This chain resembles the infinite, linear chain found in CsTiUTe₅ (Te–Te = 3.065(1) Å).³¹ Despite the short distances in the Te–Te chains along the needle axes in both materials, both are semiconductors, the conductivity in the needle (b) direction of the present compound being $5 \times 10^{-3} \Omega^{-1}$ cm⁻¹ at room temperature.

Cs₃CuHf₂Te₁₀. Cs₃CuHf₂Te₁₀ has a new structure type within the family of quaternary A/group IV/Cu/Te compounds. While the metal coordination in this compound is common, the overall structure is unexpected. Similar quaternary chalcogenides^{9,10} contain layers separated by alkali-metal cations, but Cs₃CuHf₂Te₁₀ comprises infinite one-dimensional chains of HfTe7 polyhedra and edge-shared CuTe₄ tetrahedra (Figure 5) that are separated from one another by Cs⁺ cations (Figure 6). Within a one-dimensional chain, atom Hf-(1) is connected to atom Hf(2) through a face made up of atoms Te(4), Te(5), and Te(6). Hf(1) polyhedra are connected by edge sharing to edge-shared CuTe₄ tetrahedra. Finally atom Hf(2) is interconnected to atom Hf-(2') through an unusual six-membered ring consisting of the two Hf atoms and two Te-Te pairs (Te(9')-Te-Te)(10) and Te(9)-Te(10')). The six-membered Hf/Te ring is in the chair configuration, as seen in Figure 7. Insofar as we know, this unusual interconnection of the two group IV metal centers has not been observed before.

(31) Cody, J. A.; Ibers, J. A. Inorg. Chem., in press.

(32) Huffman, J. C. Ph.D. Dissertation, Indiana University, 1974.

Selected distances and angles for $Cs_3CuHf_2Te_{10}$ are given in Table 5. Complete metrical data are given in Table SV.²⁵ The Cu–Te bond distances, which range from 2.543(4) to 2.709(4) Å, compare closely with those in Cu₂MTe₃ (2.594(1) to 2.705(1) Å).¹² The CuTe₄ tetrahedron is distorted, with Te–Cu–Te bond angles ranging from 94.52(13) to 132.8(2)°. The Hf–Te bond distances, which range from 2.824(2) to 3.031(2) Å, agree with those found in K₄Hf₃Te₁₇ (2.900(4) to 3.054(4) Å)⁴ and Cu₂HfTe₃ (2.736(1) to 3.053(1) Å).¹²

As we have noted previously,⁸ the designation of Te– Te "bonds" in these complex tellurides is often arbitrary. However, in the present structure there are only five short Te–Te pairs, ranging in length from 2.768(3) to 3.014(3) Å (Table 5). All other Te•••Te contacts are >4.0 Å. If we consider these five short Te–Te pairs to be bonds, we can formulate the anion as $\frac{1}{\infty}$ [CuHf₂-(Te₃)(Te₂)₃(Te)^{3–}], although the assignment of formal oxidation states is not possible. In any event the material is an insulator or semiconductor, the conductivity in the needle [111] direction being <1 × 10⁻⁵ Ω⁻¹ cm⁻¹ at room temperature.

Acknowledgment. This research was supported by NSF Grant No. DMR 91-14934. This work made use of MRL Central Facilities supported by the National Science Foundation at the Materials Research Center of Northwestern University under Grant No. DMR 91-20521.

Supplementary Material Available: Additional crystallographic details (Table SI), anisotropic displacement parameters (Tables SII and SIII), and bond lengths and angles (Tables SIV and SV) (18 pages). Ordering information is given on any current masthead page.

CM940502+